Producing Hidden Bugs Through Reproducible Builds

Author list goes here. (Most likely, the primary contributors to the document.)

ABSTRACT

Reproducible builds have gained additional deployment and
scrutiny in recent years. Many major software projects, in-
cluding Tor, Debian, Arch Linux, ... have undertaken mas-
sive efforts to make many of their packages build securely. As
a result, Tor and XXX build reproducibly and between 3X-
9X% of packages now build reproducibly for Debian, Arch,
etc... This has been touted as a major step toward improv-
ing the security of these projects.

This paper describes a unexpected benefit of reproducible
builds — discovery of a wide array of previously unknown
bugs. We propose a slightly unorthodox philosophy
»Am | overstating this?< specifically dictating where repro-
ducible build bugs should be fixed rather than just focusing
on the goal of making builds reproducible. We report on our
experience working on a major Linux distribution, making
XXK projects reproducible (9X%) and outline the effective
tools and techniques to do so. In addition to making a ma-
jor Linux distribution reproduce 9X% of its packages, our
philosophy also uncovered XXX unrelated bugs across XX
projects, including XX critical security flaws.

1. INTRODUCTION

Since Ken Thompson’s Turing award lecture about ‘Trust-
ing Trust’ »cited, the security world has been concerned
about the potential for backdoors in build infrastructure.
Concerns about malicious compilers and build systems are
not theoretical, with dozens of companies compromised due
to attacks in the build infrastructure & »tons of cites.
For example, in 20087 Fedora’s build system was compro-
mised by a malicious actor »cited. Despite adding
a hardware security module in response to this intrusion,
an attacker managed to subsequently compromise the build
server in 20097 and sign maliciously backdoored copies of
the OpenSSH package RIof »cite«.

As a response to these security concerns, there have been
recent efforts to make reproducible builds »cited. A
reproducible build is one where two different parties with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

similar setupsE| are able to obtain bitwise identical binaries
from the same source code » perhaps find an official defini-
tion instead<«. The idea is that if different parties are able to
build the same binary from source, then either none of their
build systems are compromised or they are all compromised
in the same way.

Surprisingly, very few pieces of software are built repro-
ducibly without effort on behalf of the software maintainer
or changes to the build system itself. For example, only
XX% of packages from Debian in 20147 would even pro-
duce identical binaries if the build process was run twice on
the same build system. The reasons for this, which are de-
scribed in more detail in Section X » fix<, in the majority
of cases deal with the use of timestamps (5X%), timezone in-
formation (3X%), locale information (2X%), or date (4X%)
»please check / fix4. There are hundreds of more subtle
issues in software that are resolved on a case-by-case basis
»>cited.

In this paper, we describe experiences from a major Linux
distribution’s efforts to make software build in a reproducible
manner. Interestingly, the major benefit discovered so far
from reproducible builds has not been security. The effort
of making builds reproducible has uncovered a large num-
ber of latent bugs in software packages. Our experiences
demonstrate that reproducible builds are perhaps even more
effective as a technique for software quality assurance.

Reasoning about reproducible builds as a quality assur-
ance tool, has led to a different set of design choices and
decisions than other reproducible builds efforts. Many ef-
forts to make reproducible builds attempt to make an envi-
ronment that solves common reproducibility issues (such as
timestamps, locales, etc.) by running in an emulated envi-
ronment or container. Others do a post-processing step to
try to strip this information out of binaries, images, com-
pressed archives, etc. Using the lens of quality assurance,
we instead focus on addressing the root cause of the errors
in the relevant tools (i.e., fixing issues upstream). This tech-
nique of fixing the root cause, as opposed to ‘papering over’
issues, has led us to find a number of latent bugs that were
undiscovered for many years. > fix <

The main contributions in this work are as follows:

e We report on the experience from a major Linux dis-
tribution’s multi-year effort with reproducibly build-
ing 3XK packages. We provide details about the tools,
techniques, and strategies that have proven effective

Lwe will more precisely define this in Section X. [l[& » fix<

at making builds reproducible. Through these efforts,
9X% of the packages now build reproducibly.

e The value of reproducible builds is clearly elucidated.
While the value for security is well recognized, fixing
issues with reproducible builds has also led to the dis-
covery of XXX bugs, including XX major security vul-
nerabilities. This demonstrates an auxiliary benefit
that goes far beyond the way in which reproducible
builds are currently used.

e This paper clearly describes the choices between fixing
bugs that lead to a lack of reproducibility in different
places in the toolchain (fixing upstream or ‘papering
over’ differences at the end). While, different choices
have been made by different projects that perform re-
producible builds, we demonstrate that this enabled
us to find an array of bugs that were missed by other
efforts.

The remainder of this paper is organized as follows. First,
Section XX describes the concepts behind reproducibility,
including the philisophical arguments about which differ-
ences should be allowed in build environments. Following
this, common tools and techniques for addressing repro-
ducibility are discussed in Section Y. Subsequently, Section
Z discusses our experiences with making builds reproducible
is described, including both anecdotal experiences and a
quantification of which techniques worked on what set of
packages. Using this context, Section XXX then does a
deep dive into the more general bugs found when looking
for reproducible build issues. This shows situations where
our philosophy of fixing bugs in the original source paid div-
idends in fixing important software flaws elsewhere. Section
XX discusses related work, primarily on software testing and
build, before the paper concludes.

2. REPRODUCIBLE BUILDS

» 1 para history / motivation. Set up the next sections<

2.1 Reproducible builds

»clear definition, concepts, 2-4 paragraphs<

2.2 What should be assumed about the build
environment?

» 3-4 paragraphs, itemized list<

3. REPRODUCIBLE BUILD TECHNIQUES

» describe all the tools / techniques here. SOURCE_DATE_EPOCH,

strip-nondeterminism, docker containers, reprotest, etc. 2-4 para-
graphs per tool / technique<

4. EXPERIENCES MAKING BUILDS REPRO-

DUCIBLE

» This part of the eval focuses on efforts to make builds
reproducible. What sorts of flaws were found where? How were they
fixed? We need to make most of this quantifiable. Lots of data
about number of packages fixed with each type of fix.<

»some anecdotes about fixing bugs / interesting bugs are
most welcome. This should be appropriately organized. (I can fix
the org later). <

10s

1s

CrashSimulator
run time
10ms 100ms
»

ms

ims 10ms 100ms 1s 10s
Original run time

Figure 1: I like to sometimes create figures with fake
data so that I think through what I want to show be-
fore running an experiment that takes days. DEFI-
NITELY LABEL THIS CLEARLY SO IT IS NEVER
SUBMITTED. Look how clearly I labeled this as fake
data!!!

5. BUGS FOUND

This section decribes the flaws found via making software
reproducible. These bugs are not merely situations where re-
producibility does not work, but instead covers (seemingly)
unrelated bugs uncovered via this process.

» likely have a table showing some quantitative data about
the bugs. Hopefully we have at least a few dozen examples. It would
be fine to categorize and group them it there are too many to list. <

» General ideas about what was found. Discussing interesting
details of most types of bugs.«

6. RELATED WORK

» Explain the rough grouping of the related work at a high
level 4

» break it down into categories either by paragraph or so, or
have subsections. 4

7. CONCLUSION

» Explain the few key takeaways. Benefits, eval results, usage,
what is new. If code / data is available, reiterate. optionally, explain
future work. <

8. REFERENCES

	Introduction
	Reproducible Builds
	Reproducible builds
	What should be assumed about the build environment?

	Reproducible Build Techniques
	Experiences Making Builds Reproducible
	Bugs Found
	Related Work
	Conclusion
	References

